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Abstract. In this paper we characterize the local maxima of a continuous global optimization
formulation for finding the independence number of a graph. Classical Karush-Kuhn-Tucker
conditions and simple combinatorial arguments are found sufficient to deduce several interest-
ing properties of the local and global maxima. These properties can be utilized in developing
new approaches to the maximum independent set problem.
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1. Introduction

Many important discrete optimization problems such as maximum clique,
maximum independent set, MAX CUT, quadratic assignment and others
can be formulated as continuous global optimization problems (Pardalos,
1996). The standard quadratic programming formulation due to Motzkin
and Straus (1965), continuous formulation due to Gibbons et al. (1996)
and other formulations (Harant, 1998; Harant et al., 1999; Harant, 2000)
have led to the development of effective heuristics for maximum clique
and maximum independent set problems (Bomze, 1997; Abello et al., 2001;
Burer et al., 2002; Busygin et al., 2002; de Angelis et al., 2004). Gibbons
et al. (1997) also characterize maximal cliques in terms of local solutions
to the Motzkin-Straus formulation. Efficient approximation algorithms due
to Goemans and Williamson for MAX CUT problem, using semidefinite
programming can be found in (Goemans and Williamson, 1995). Burer
et al. have also developed heuristics for MAX CUT problem in (Burer
et al., 2001).

With the development of powerful global optimization algorithms and
software packages, it is essential to study the characteristics of continu-
ous formulations of discrete problems, to identify special properties that
can be exploited in order to adapt and improve the performance of
these algorithms and build effective heuristics. Thus, successful numerical
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methods developed for special types of global optimization problems, such
as polynomial fractional programming (Tuy et al., 2004), can be utilized
for solving properly formulated discrete optimization problems. In this
paper, we consider a polynomial fractional formulation for the maximum
independent set problem and study its local and global maximum prop-
erties. We first characterize the local maxima of this formulation and
then obtain a modified formulation which has one-to-one correspondence
between maximal independent sets and local maxima. The two formula-
tions are further compared in terms of numerical results obtained using a
simple local search algorithm and the standard constrained optimization
function available in Matlab� Optimization Toolbox.

The paper is organized as follows. After introducing the required defini-
tions and the notations used in this paper, we provide the formulation for
independence number in Section 3. In Section 4, we study the properties
of its local maxima in the continuous and binary neighborhoods. In Sec-
tion 5, we modify this formulation so that the local maxima of the newly
obtained formulation correspond to maximal independent sets. In Section
6, we present some computational test results and then conclude.

2. Definitions and Notations

Let G= (V ,E) be a simple undirected graph with vertex set V ={1, . . . , n}
and edge set E ⊆V ×V . For i ∈V , let N(i) and di denote the set of neigh-
bors and degree of vertex i in G, respectively. The complement graph of G

is the graph Ḡ = (V , Ē), where Ē = {(i, j) ∈ V × V : i �= j, (i, j) /∈ E}. For a
subset W ⊆V let G(W) denote the subgraph induced by W on G, G(W)=
(W,E ∩ (W ×W)).

A dominating set D ⊆V is a set of vertices such that every vertex in the
graph is either in this set or has a neighbor in this set. A set of vertices
I ⊆ V is called an independent set if for every i, j ∈ I , (i, j) /∈ E, i.e., the
graph G(I) is edgeless. An independent set is maximal if it is not a sub-
set of any larger independent set, and maximum if there are no larger inde-
pendent sets in the graph. The maximum cardinality of an independent set
of G is called the independence number of the graph G and is denoted by
α(G). A clique C is a subset of V such that the subgraph G(C) induced by
C on G is complete. The maximum clique problem is to find a clique of
maximum cardinality. The clique number ω(G) is the cardinality of a max-
imum clique in G.

Clearly, I is a maximum independent set of G if and only if I is a max-
imum clique of Ḡ. Computation of α(G) and ω(G) for general graphs is
difficult as the maximum independent set and the maximum clique prob-
lems are NP-hard (Garey and Johnson, 1979). These problems are very
important due to a wide range of their practical applications (Bomze et al.,
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1999). For any graph, Wei’s lower bound (Wei, 1981; Caro and Tuza, 1991)
on the independence number is given by,

α(G)≥
∑

i∈V (G)

1
1+di

(1)

Finally, for a given vector x ∈{0,1}n, its binary neighborhood consists of
all the binary vectors that are at Hamming distance 1 from x. That is, the
set of all binary vectors that can be obtained from x by changing the value
of one of its components to the opposite.

3. Continuous Global Optimization Formulation

The following formulation of the maximum independent set problem was
proposed in (Balasundaram and Butenko, 2005a).

THEOREM 1. The independence number α(G) satisfies the continuous global
optimization formulation:

α(G)= max
x∈[0,1]n

∑

i∈V (G)

xi

1+ ∑
j∈N(i)

xj

(2)

The proof of this result in (Balasundaram and Butenko, 2005) also shows that
every local maximum of (2) is a 0-1 vector. Denote by x∗ ≡I ∗, the equivalence
of a binary vector to a subset of vertices constructed as I ∗ = {i ∈V :x∗

i =1}.
We will say that a 0-1 solution x∗ of (2) corresponds to a set of vertices
I ∗ ⊆ V . Even though all local maximizers of (2) are binary vectors, they
do not necessarily correspond to independent sets. In fact, it was found in
(Balasundaram and Butenko, 2005) that, if x∗ is a global maximizer of (2)
then V ∗ induces a graph whose components are cliques. That is, V ∗ is such
that Wei’s lower bound is sharp on the graph G(V ∗). Further in this paper we
will use term independent union of cliques (IUC) for a graph whose connected
components are cliques. Figure 1 shows a graph that has independence num-
ber 2 with maximum independent sets {1, 5}, {2, 5}, {3, 5} and {1, 4}. But
the objective function attains optimum for {1, 2, 3, 5} also, which is an IUC
with two clique components {1, 2, 3} and {5}.

4. Local Maxima

We now identify some properties of local maxima of the above formulation.
Note that since any local maximum of (2) is a 0-1 vector, it corresponds
to a subset of vertices of the graph (denoted by x ≡ I ). We now set up the
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Figure 1. An example of a graph for which an optimal solution to (2) does not correspond to
an independent set.

Karush-Kuhn-Tucker (KKT) conditions for this formulation and a simple
lemma that will be used subsequently.

Denote by f (x) the objective function of (2):

f (x)=
∑

i∈V

xi

1+ ∑
j∈N(i)

xj

. (3)

We apply the first order necessary conditions (FONC) to problem (2) writ-
ten as follows,

max f (x)

subject to:

xi −1≤0 ∀ i ∈V :λi;
−xi ≤0 ∀ i ∈V :µi.

Recall that all local maximizers of (2) are binary vectors. And it is easy
to check that the Jacobian of all active constraints has full rank at any
binary vector, therefore all feasible binary vectors are regular points for
problem (2). Thus, any local maximizer xo of (2) satisfies the KKT condi-
tions. This implies that there exist λo,µo such that the following conditions
are satisfied,

∀ k ∈V :
∂f

∂xk

∣∣∣∣
x=xo

=λo
k −µo

k;
λo

k(x
o
k −1)=0;

µo
k(−xo

k )=0;
λo

k ≥ 0;
µo

k ≥ 0;
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where

∂f

∂xk

∣∣∣∣
x=xo

= 1
1+ ∑

j∈N(k)

xo
j

−
∑

i∈N(k)

xo
i

(xo
k +1+ ∑

j∈N(i)\{k}
xo

j )
2
.

Consider I o ⊆V , where xo ≡ I o. Then ∀ k ∈ I o, xo
k = 1 and from the KKT

conditions above we have,

µo
k =0;

λo
k = 1

1+ ∑
j∈N(k)

xo
j

−
∑

i∈N(k)

xo
i

(xo
k +1+ ∑

j∈N(i)\{k}
xo

j )
2

= 1
1+|N(k)∩ I o| −

∑

i∈N(k)∩I o

1
(1+|N(i)∩ I o|)2

.

On the other hand, if k ∈V \ I o then xo
k =0 and the KKT conditions yield,

λo
k =0;

µo
k =

∑

i∈N(k)

xo
i

(xo
k +1+ ∑

j∈N(i)\{k}
xo

j )
2
− 1

1+ ∑
j∈N(k)

xo
j

=
∑

i∈N(k)∩I o

1
(1+|N(i)∩ I o|)2

− 1
1+|N(k)∩ I o| .

Next we prove a trivial lemma that will be used in further discussion.

LEMMA 1. Consider the problem

maximize f (x)

s.t. Ax ≤b,

where f : 
n → 
 is a continuously differentiable function, A ∈ 
m×n,m > n.
Assume that a regular point x∗ satisfies the FONC so that n constraints are
active in x∗ and strict complementarity holds, i.e., there exists µ≥0 such that

∇f (x∗)=AT µ (4)

and the components of µ corresponding to active constraints in x∗ are
positive. Then x∗ is a local maximizer of the considered problem.

Proof. Denote by Ā ∈ 
n×n the submatrix of A consisting of rows
corresponding to the constraints that are active in x∗ and by µ̄ ∈ 
n the
corresponding Lagrange multipliers; µ̄>0. Then

∇f (x∗)= ĀT µ̄. (5)
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Consider any feasible direction d in x∗. Then Ā(x∗ + d) ≤ b̄, where b̄ ∈ 
n

is the vector of components of b corresponding to the active constraints.
Since Āx∗ = b̄, we have Ād ≤0. Moreover, since x∗ is regular, Āx = b̄ has a
unique solution (given by x∗), thus if d �= 0 then at least one of the com-
ponents of Ād has to be negative. Thus, using (5) we have

∇f (x∗)T d =µT Ād <0.

So, d is a descent direction. Since d is an arbitrary feasible direction, x∗ is
a local maximizer.

THEOREM 2. If xo is a point of local maximum of (2) and xo ≡ I o, then
I o is a dominating set.

Proof. Suppose that I o is not a dominating set, then there exists xo
i =0

such that N(i)∩ I o =∅. Construct x ′, such that

x ′
j =

{
ε >0, if j = i;
xo

j , if j ∈V \ {i}.

Then we have, f (x ′) = f (xo) + ε, which contradicts the fact that xo is a
local maximum. Hence, I o must be a dominating set.

COROLLARY 1. If xo is a local maximizer of (2) with xo ≡ I o and I o is
an independent set, then it is maximal and there exist unique λo,µo such that
(xo, λo,µo) solves KKT-FONC given by

λo
k =

{
1, if k ∈ I o;
0, if k ∈V \ I o;

µo
k =

{
0, if k ∈ I o;

|N(k)∩ I o|− 1
1+|N(k)∩I o| , if k ∈V \ I o.

REMARK. The conclusion that a local maximum corresponds to a dom-
inating set is only a necessary condition and the converse is obviously not
true. For example, consider the graph G1 in Figure 2 with α(G1)= 2. The
set of vertices I ={1,2,3} is a dominating set. Since we already know that
a global maximum corresponds to an independent union of cliques with
maximum number of components, we can also consider maximal by inclu-
sion IUC (i.e., such that it is not a subset of IUC with larger number of
components) to be candidates for local maxima. Note that I is a max-
imal clique and there does not exist a strict superset which induces an
IUC with 2 or more components making this a maximal IUC. However,
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Figure 2. Graphs to illustrate non-local-optimality of a dominating set and a maximal indepen-
dent union of cliques and local optimality of a vector not corresponding to an IUC.

x = [1,1,1,0]T ≡I is not a local maximum. Let x ′ = [1,1,1, ε]T , where ε >0.
Then f (x ′) = 1 + ε(1+ε)

3(3+ε)
> f (x) = 1 for any ε > 0. So, even a maximal IUC

may not correspond to a local maximizer.
Next example shows that even though a global maximizer always cor-

responds to an IUC, a local maximizer may not have the same property.
Consider the graph G2 with α(G2)=2. The sets {1,4} and {2,3} are max-
imal, as well as maximum independent sets. But it can be verified that the
point x = [1,1,1,1]T ≡V (G2) is also a local maximum with multipliers λk =
1
9 and µk = 0 for all k ∈ V (G2). So, a local maximizer may correspond to
a set that is not an independent set or even IUC. The following theorem
establishes the converse for a special case when the set is a maximal inde-
pendent set.

THEOREM 3. If I o is a maximal independent set and xo ≡ I o then xo is a
local maximizer of (2).

Proof. As before xo is a regular point. FONC are satisfied in xo as the
KKT system has the following unique solution

λo
k =

{
1, if k ∈ I o;
0, if k ∈V \ I o;

µo
k =

{
0, if k ∈ I o;

|N(k)∩ I o|− 1
1+|N(k)∩I o| , if k ∈V \ I o;

and µo
k > 0 as |N(k)∩ I o| ≥ 1 for all k ∈V \ I o since I o is a maximal inde-

pendent set.
Problem (2) and x∗ =xo satisfy all conditions of Lemma 1, where m=2n

and exactly n constraints are active in xo. Hence, xo is a local maximizer
of (2).



412 B. BALASUNDARAM AND S. BUTENKO

We now look at local maximum properties of (2) in the binary neighbor-
hood. The results are similar to the continuous case.

THEOREM 4. If xo is a point of local maximum of (2) in the binary neigh-
borhood and xo ≡ I o, then I o is a dominating set.

Proof. Consider xo, a local maximizer in the binary neighborhood with
xo ≡ I o. Let k ∈V \ I o, then xo

k =0. Construct a neighbor of xo as follows,

x ′′
i =

{
1, if i =k;
xo

i , if i ∈V \ {k}.
Since xo is a local maximizer, f (x ′′)≤f (xo), where

f (xo)=
∑

i∈I o

1
1+|N(i)∩ I o| .

If N(k)∩ I o =∅, then

f (x ′′)=
∑

i∈I o∪{k}

1
1+|N(i)∩ (I o ∪{k})| =f (xo)+1>f (xo),

which is a contradiction. Hence, for every k /∈ I o, N(k)∩ I o �= ∅, so I o is a
dominating set.

THEOREM 5. If I o is a maximal independent set and xo ≡ I o, then xo is a
local maximizer of (2) in the binary neighborhood.

Proof. Since I o is an independent set, f (xo) = |I o|. Any vector in the
binary neighborhood of xo can be obtained by either changing xo

k from 1
to 0 for some k∈I o or changing xo

k from 0 to 1 for some k /∈I o. We analyze
these two cases separately.

First, let k ∈ I o, then xo
k =1. Construct x ′ in the binary neighborhood of

xo as follows,

x ′
i =

{
0, if i =k;
xo

i , if i ∈V \ {k}.
Then

f (x ′)=|I o|−1<f (xo).

Now let k ∈V \ I o, then xo
k =0. Construct x ′′ as follows,

x ′′
i =

{
1, if i =k;
xo

i , if i ∈V \ {k}.
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Then

f (x ′′)= x ′′
k

1+ ∑
j∈N(k)

x ′′
j

+
∑

i∈I o∩N(k)

x ′′
i

1+ ∑
j∈N(i)

x ′′
j

+
∑

i∈I o\N(k)

x ′′
i

1+ ∑
j∈N(i)

x ′′
j

= 1
1+|N(k)∩ I o| + |N(k)∩ I o|

2
+|I o|− |N(k)∩ I o|

= |I o|−
(

p2 +p −2
2(1+p)

)
,

where p = |N(k) ∩ I o| ≥ 1 is integer and hence p2+p−2
2(1+p)

≥ 0. Thus, f (x ′′) ≤
f (xo) and for any x in the binary neighborhood of xo, f (x)≤f (xo).

REMARK. Note that xo does not have to be a strict local maximum. For
instance when p = 1, there is a vertex outside the set that has exactly one
neighbor inside and hence including that induces an IUC with the same
number of components as in I o (i.e., |I o|−1 cliques of size 1 and a clique
of size 2). So, the objective function value does not change and the local
maximizer is not strict.

5. Modified Formulation

We now modify the above formulation to obtain one with more desirable
properties. In particular, we are interested in a one-to-one correspondence
between local maximizers of the formulation and maximal independent sets
of the graph.

Given graph G= (V ,E) with the adjacency matrix AG, consider the fol-
lowing function:

g(x)=
∑

i∈V

xi

1+ ∑
j∈N(i)

xj

− 1
2
xT AGx

=
∑

i∈V

xi

⎛

⎜⎝
1

1+ ∑
j∈N(i)

xj

− 1
2

∑

j∈N(i)

xj

⎞

⎟⎠ .

Then, ∀ x ∈ [0,1]n,

g(x)≤f (x)≤ max
x∈[0,1]n

f (x)=α(G),
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and for x∗ corresponding to a maximum independent set, g(x∗) = α(G).
Hence we have

α(G)= max
x∈[0,1]n

⎧
⎪⎨

⎪⎩

∑

i∈V

xi

⎛

⎜⎝
1

1+ ∑
j∈N(i)

xj

− 1
2

∑

j∈N(i)

xj

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
. (6)

As in (Balasundaram and Butenko, 2005), for a given k, we can rewrite
g(x) as

g(x)=xkAk(x)+Bk(x)+Ck(x),

where

Ak(x)= 1
1+ ∑

j∈N(k)

xj

−
∑

j∈N(k)

xj ,

Bk(x)=
∑

i∈N(k)

xi

xk +1+ ∑
j∈N(i)\{k}

xj

,

Ck(x)=
∑

i∈S

xi

⎛

⎜⎝
1

1+ ∑
j∈N(i)

xj

− 1
2

∑

j∈N(i)

xj

⎞

⎟⎠ .

Here S =V \ ({k}∪N(k)). Using this representation and arguments similar
to ones used in (Balasundaram and Butenko, 2005), it is easy to show that
g(x) is convex with respect to each variable and every local (and global)
maximizer is a binary vector.

We now look at the local maxima of (6). Note that every local maximum
is a binary vector and is a regular point.

THEOREM 6. xo is a point of local maximum of (6) if and only if I o is a
maximal independent set, where xo ≡ I o.

Proof. Let xo be a local maximum of (6). Then the KKT conditions
imply the existence of λo,µo such that

∀ k ∈V :
∂g

∂xk

∣∣∣∣
x=xo

=λo
k −µo

k;
λo

k(x
o
k −1)=0;

µo
k(−xo

k )=0;
λo

k ≥ 0;
µo

k ≥ 0;
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where

∂g

∂xk

∣∣∣∣
x=xo

= 1
1+ ∑

j∈N(k)

xo
j

−
∑

j∈N(k)

xj −
∑

i∈N(k)

xo
i

(xo
k +1+ ∑

j∈N(i)\{k}
xo

j )
2
.

Let xo ≡ I o, then ∀ k ∈ I o, xo
k =1 and from KKT-FONC we have,

µo
k =0;

λo
k = 1

1+|N(k)∩ I o| − |N(k)∩ I o|−
∑

i∈N(k)∩I o

1
(1+|N(i)∩ I o|)2

≥ 0.

Since k is an arbitrary vertex from I o, in order to show that I o is an inde-
pendent set it suffices to prove that N(k)∩ I o =∅. Assume that this is not
the case, i.e., |N(k) ∩ I o| ≥ 1. Then λo

k ≤ 1/2 − 1 < 0, which contradicts the
nonnegativity of λo

k. Hence, |N(k)∩I o|=0 for any k∈I o and I o is an inde-
pendent set. Now suppose this independent set is not maximal. Then there
exists xo

k =0, k ∈V \ I o such that N(k)∩ I o =∅. Construct x ′, such that

x ′
j =

{
ε >0, if j = i;
xo

j , if j ∈V \ {i}.
Then we have, f (x ′) = f (xo) + ε, which contradicts the fact that xo is a
local maximum. Hence, I o must be a maximal independent set.

To prove the other direction, suppose I o is a maximal independent set
and xo ≡ I o. In order to show that xo is a local maximum, we show that
it satisfies the KKT-FONC and use Lemma 1. The unique solution to the
KKT system is

λo
k =

{
1, if k ∈ I o;
0, if k ∈V \ I o;

µo
k =

{
0, if k ∈ I o;

2|N(k)∩ I o|− 1
1+|N(k)∩I o| , if k ∈V \ I o.

Note that µo
k >0 as |N(k)∩ I o|≥1 for any k ∈V \ I o since I o is a maximal

independent set.
Here again, all conditions of Lemma 1 are satisfied for problem (6) with

x∗ =xo, so xo is a local maximizer of (6).

COROLLARY 2. x∗ is a global maximum of (6) if and only if V ∗ is a max-
imum independent set of G, where x∗ ≡V ∗.

We now proceed to show that similar properties hold in case of the
binary neighborhood for formulation (6).
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THEOREM 7. xo is a local maximum of (6) in the binary neighborhood if
and only if I o is a maximal independent set, where xo ≡ I o.

Proof. Let I o be a maximal independent set with xo ≡ I o, then g(xo) =
|I o|. Let x ′ be a binary neighbor obtained from xo by changing a com-
ponent that was 1 to 0. Then g(x ′) = |I o| − 1 < g(xo) as x ′ would still
correspond to an independent set.

Now, let x ′′ denote a binary neighbor obtained by changing the compo-
nent, say k, in xo from 0 to 1. Let I ′′ be the corresponding set of vertices.
Then

g(x ′′)=
∑

i∈I ′′

1
1+|N(i)∩ I ′′| − |N(k)∩ I o|

= 1
1+|N(k)∩ I ′′| +

∑

i∈I o\N(k)

1
1+|N(i)∩ I ′′|

+
∑

i∈I o∩N(k)

1
1+|N(i)∩ I ′′| − |N(k)∩ I o|

= 1
1+|N(k)∩ I o| +

∑

i∈I o\N(k)

1
1+|N(i)∩ I o|

+
∑

i∈I o∩N(k)

1
2+|N(i)∩ I o| − |N(k)∩ I o|

= 1
1+|N(k)∩ I o| + |I o \N(k)|+ 1

2
|N(k)∩ I o|− |N(k)∩ I o|

= 1
1+|N(k)∩ I o| + |I o|− |N(k)∩ I o|− 1

2
|N(k)∩ I o|

= |I o|− 3
2
|N(k)∩ I o|+ 1

1+|N(k)∩ I o|
= |I o|− 3p2 +3p −2

2(1+p)
,

where p =|N(k)∩ I o|≥ 1 as I o is maximal. Note that 3p2+3p−2
2(1+p)

> 0 if p ≥ 1
and integer, so we have g(x ′′)<g(xo), which establishes one direction.

To show the other direction, suppose that xo is a local maximum in the
binary neighborhood and xo ≡ I o.

g(xo)=
∑

i∈I o

1
1+|N(i)∩ I o| − |E ∩ (I o × I o)|.

Suppose that I o is not an independent set. Then ∃ u, v ∈ I o such that
(u, v)∈E. Construct x ′ in the binary neighborhood of xo as follows,
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x ′
i =

{
xo

i , if i �=u;
0, if i =u; i ∈V.

Let I ′ be the corresponding vertex set, I ′ = I o \ {u}. Then we have,

g(x ′)=
∑

i∈I ′

1
1+|N(i)∩ I ′| − |E ∩ (I ′ × I ′)|.

Note that

|E ∩ (I ′ × I ′)|= |E ∩ (I o × I o)|− |N(u)∩ I o|
and

∑

i∈I ′

1
1+|N(i)∩ I ′|

=
∑

i∈I ′\N(u)

1
1+|N(i)∩ I ′| +

∑

i∈I ′∩N(u)

1
1+|N(i)∩ I ′|

=
∑

i∈I ′\N(u)

1
1+|N(i)∩ I o| +

∑

i∈I ′∩N(u)

1
1+|N(i)∩ I o|−1

,

so

g(xo)−g(x ′)= 1
1+|N(u)∩ I o| +

∑

i∈I ′∩N(u)

(
1

1+|N(i)∩ I o| − 1
|N(i)∩ I o|

)

−|N(u)∩ I o|<0,

since

1
1+|N(u)∩ I o| − |N(u)∩ I o|<0

as v∈N(u)∩I o. But xo was assumed to be a local maximum and hence by
contradiction I o is an independent set.

Now suppose that I o is not maximal. Then there exists at least one ver-
tex a that can be added to I o. That is, I ′′ = I o ∪{a} is an independent set
with the corresponding binary vector x ′′ given by

x ′′
i =

{
xo

i , if i �=a;
1, if i =a;

and g(x ′′) = |I ′′| = |I o| + 1 > |I o| = g(xo). This contradiction with the local
maximality of xo in the binary neighborhood establishes that I o is a max-
imal independent set and hence the required result.
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6. Numerical Experiments

Numerical experiments were conducted to compare the performance of the
original formulation (2) and the modified formulation (6) as objective func-
tions for a simple local search algorithm and a constrained optimization
function available in the Matlab� Optimization Toolbox. Complements of
selected DIMACS clique benchmark graphs (DIMACS, 1995) were used as
instances for testing.

The local search algorithm starts at a random binary vector and reaches
a local maximum in the binary neighborhood by successively moving
to the first improving neighbor found. Table 1 presents the results that
were obtained, where average and the maximum objective function value
obtained starting from ten random binary vectors are shown for formula-
tions (2) and (6).

Matlab� function fmincon uses a sequential quadratic programming
approach for solving medium-scale constrained optimization problems.
Details and relevant references can be found at (MathWorks, 2004). The

Table 1. Results for local search

Instance Vertices Edges α(G) Original Modified
Formulation Formulation

Avg Best Avg Best

c-fat200-1 200 18366 12 9.86 12.00 12.00 12.00
c-fat200-2 200 16665 24 18.12 24.00 23.60 24.00
c-fat200-5 200 11427 58 57.40 58.00 57.90 58.00
johnson16-2-4 120 1680 8 7.68 8.00 8.00 8.00
johnson8-2-4 28 210 4 3.62 4.00 4.00 4.00
johnson8-4-4 70 560 14 14.00 14.00 11.20 14.00
keller4 171 5100 11 10.00 11.00 8.20 10.00
hamming6-2 64 192 32 30.70 32.00 24.30 32.00
hamming6-4 64 1312 4 3.04 4.00 2.80 4.00
hamming8-2 256 1024 128 125.90 128.00 74.60 82.00
hamming8-4 256 11776 16 16.00 16.00 10.20 13.00
san200 0.7 2 200 5970 18 12.30 13.00 12.70 14.00
san200 0.9 1 200 1990 70 46.70 48.00 37.70 47.00
san200 0.9 2 200 1990 60 37.30 40.00 29.10 32.00
san200 0.9 3 200 1990 44 32.60 35.00 27.60 29.00
brock200 1 200 5066 21 17.30 19.00 14.00 16.00
brock200 2 200 10024 12 9.10 11.00 7.90 9.00
brock200 3 200 7852 15 12.00 13.00 10.20 12.00
brock200 4 200 6811 17 12.70 15.00 10.80 12.00
p hat300-1 300 33917 8 7.20 8.00 5.60 6.00
p hat300-2 300 22922 25 23.80 25.00 17.60 19.00
p hat300-3 300 11460 36 30.70 32.00 23.90 28.00
mann a27 378 702 126 117.20 118.00 117.80 119.00
mann a9 45 72 16 15.10 16.00 14.30 15.00



POLYNOMIAL FRACTIONAL FORMULATION 419

Table 2. Results for Matlab� – fmincon

Instance Vertices Edges α(G) Original Modified
Formulation Formulation

Avg Best Avg Best

c-fat200-1 200 18366 12 9.86 12.00 11.88 12.00
c-fat200-2 200 16665 24 21.78 24.00 22.40 24.00
c-fat200-5 200 11427 58 54.79 58.00 57.30 58.00
johnson16-2-4 120 1680 8 4.37 4.44 8.00 8.00
johnson8-2-4 28 210 4 2.54 3.00 4.00 4.00
johnson8-4-4 70 560 14 13.30 14.00 11.50 14.00
keller4 171 5100 11 7.29 9.00 7.00 7.00
hamming6-2 64 192 32 30.30 32.00 22.30 32.00
hamming6-4 64 1312 4 2.54 3.33 4.00 4.00
hamming8-2 256 1024 128 104.14 128.00 78.00 90.00
hamming8-4 256 11776 16 14.93 16.00 10.50 16.00
san200 0.7 2 200 5970 18 12.00 12.00 12.00 12.00
san200 0.9 1 200 1990 70 45.39 47.00 45.20 46.00
san200 0.9 2 200 1990 60 35.78 38.00 36.95 40.00
san200 0.9 3 200 1990 44 31.38 34.00 30.90 33.00
brock200 1 200 5066 21 17.20 19.00 16.50 18.00
brock200 2 200 10024 12 8.59 10.00 8.00 9.00
brock200 3 200 7852 15 11.40 13.00 10.20 12.00
brock200 4 200 6811 17 13.40 15.00 12.20 14.00
p hat300-1 300 33917 8 7.20 8.00 6.30 7.00
p hat300-2 300 22922 25 22.80 25.00 21.00 24.00
p hat300-3 300 11460 36 32.02 33.00 29.90 32.00
mann a27 378 702 126 116.99 117.00 117.10 118.00
mann a9 45 72 16 15.10 16.00 15.00 16.00

results tabulated in Table 2 show the average and best objective function
value attained in ten runs starting from random initial feasible points inside
[0,1]n with formulations (2) and (6) as objective functions.

A total of 24 DIMACS clique benchmark graphs with up to 378 verti-
ces were complemented and used in testing. Note that the values could be
rounded up to get lower bounds on α(G). In terms of the average objec-
tive function value achieved in 10 runs of the local search algorithm, for-
mulation (2) produced better results than formulation (6) with 17 instances
whereas formulation (6) was better in 7 cases. In terms of the best solution
obtained in 10 runs, formulation (2) beats formulation (6) 14 to 2, with the
rest being equal. Similarly with fmincon, in terms of average performance,
the ratio was 15 to 8 in favor of formulation (2) with one instance produc-
ing identical results with both. In terms of best solution obtained, the ratio
was 11 to 5 again in favor of formulation (2), with the rest being equal.

Note that given a graph G = (V ,E), every maximal independent set in
G corresponds to a local maximum for both formulations. The original
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formulation can have additional “spurious” local maxima besides these.
However, with both algorithms, test results indicate that formulation (2)
produces better quality solutions more often than formulation (6). The
main advantage we gain by using the modified formulation is that the
locally optimal solution will correspond to a maximal independent set as
the spurious local maxima that exist in the other formulation are elimi-
nated here. Note that in the original formulation, although the objective
attained is a lower bound on the independence number, the solution may
not even correspond to an independent set.

7. Conclusion

We have shown that a local maximum of a continuous formulation for the
independence number of a graph corresponds to a dominating set in the
graph and every maximal independent set of the graph corresponds to a
local maximum of this formulation. We modify the formulation in order to
strengthen these characterizations and obtain a one to one correspondence
between local maxima and maximal independent sets in this case. Based on
computational test results, we find the original formulation to be more suit-
able for the purposes of computing bounds on independence number. We
find the modified formulation to be appropriate whenever maximal inde-
pendent sets are to be found.
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